Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Foundation models (FMs) provide societal benefits but also amplify risks. Governments, companies, and researchers have proposed regulatory frameworks, acceptable use policies, and safety benchmarks in response. However, existing public benchmarks often define safety categories based on previous literature, intuitions, or common sense, leading to disjointed sets of categories for risks specified in recent regulations and policies, which makes it challenging to evaluate and compare FMs across these benchmarks. To bridge this gap, we introduce AIR-BENCH 2024, the first AI safety benchmark for language models aligned with emerging government regulations and company policies, following the regulation-based safety categories grounded in the AI risks taxonomy, AIR 2024. AIR 2024 decomposes 8 government regulations and 16 company policies into a four-tiered safety taxonomy with 314 granular risk categories in the lowest tier. AIR-BENCH 2024 contains 5,694 diverse prompts spanning these categories, with manual curation and human auditing to ensure quality. We evaluate leading language models on AIR-BENCH 2024, uncovering insights into their alignment with specified safety concerns. By bridging the gap between public benchmarks and practical AI risks, AIR-BENCH 2024 provides a foundation for assessing model safety across jurisdictions, fostering the development of safer and more responsible AI systems.more » « less
-
Graph-based anomaly detection is pivotal in diverse security applications, such as fraud detection in transaction networks and intrusion detection for network traffic. Standard approaches, including Graph Neural Networks (GNNs), often struggle to generalize across shifting data distributions. For instance, we observe that a real-world eBay transaction dataset revealed an over 50% decline in fraud detection accuracy when adding data from only a single new day to the graph due to data distribution shifts. This highlights a critical vulnerability in purely data-driven approaches. Meanwhile, real-world domain knowledge, such as "simultaneous transactions in two locations are suspicious," is more stable and a common existing component of real-world detection strategies. To explicitly integrate such knowledge into data-driven models such as GCNs, we propose KnowGraph, which integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection. KnowGraph comprises two principal components: (1) a statistical learning component that utilizes a main model for the overarching detection task, augmented by multiple specialized knowledge models that predict domain-specific semantic entities; (2) a reasoning component that employs probabilistic graphical models to execute logical inferences based on model outputs, encoding domain knowledge through weighted first-order logic formulas. In addition, KnowGraph has leveraged the Predictability-Computability-Stability (PCS) framework for veridical data science to estimate and mitigate prediction uncertainties. Empirically, KnowGraph has been rigorously evaluated on two significant real-world scenarios: collusion detection in the online marketplace eBay and intrusion detection within enterprise networks. Extensive experiments on these large-scale real-world datasets show that KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings, achieving substantial gains in average precision when generalizing to completely unseen test graphs. Further ablation studies demonstrate the effectiveness of the proposed reasoning component in improving detection performance, especially under extreme class imbalance. These results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.more » « less
-
With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding and software development, safety and security concerns, such as generating or executing malicious code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, an evaluation platform with benchmarks grounded in four key principles: real interaction with systems, holistic evaluation of unsafe code generation and execution, diverse input formats, and high-quality safety scenarios and tests. RedCode consists of two parts to evaluate agents’ safety in unsafe code execution and generation: (1) RedCode-Exec provides challenging code prompts in Python as inputs, aiming to evaluate code agents’ ability to recognize and handle unsafe code. We then map the Python code to other programming languages (e.g., Bash) and natural text summaries or descriptions for evaluation, leading to a total of over 4,000 testing instances. We provide 25 types of critical vulnerabilities spanning various domains, such as websites, file systems, and operating systems. We provide a Docker sandbox environment to evaluate the execution capabilities of code agents and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents’ vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing unsafe operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Unsafe operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen reveal that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are publicly available at https://github.com/AI-secure/RedCode.more » « less
An official website of the United States government

Full Text Available